MATHEMATICS IN EVERYDAY LIFE–8

Chapter 3 : Square and Square Roots

EXERCISE 3.1

- 1. We know that the natural numbers ending with the digits 2, 3, 7 or 8 are not perfect squares.
 - (*i*) 54473 ends with digit 3.
 - (ii) 4058 ends with digit 8.
 - (iii) 24257 ends with digit 7.
 - (iv) 3332 ends with digit 2.

Therefore, all these numbers are not perfect squares.

- 2. If a number has 1 or 9 in the unit place, then its square ends with 1, if the number has 4 or 6 in the unit place, then its square ends with 6, and the number 3 or 7 in the unit place, its square ends with 9. Therefore,
 - (*i*) 1234 ends with 4, its square ends with 6.
 - (ii) 4329 ends with 9, its square ends with 1.
 - (iii) 8723 ends with 3, its square ends with 9.
- 3. The units digits of the square of a number having digits at units places as 1 or 9 is 1. Therefore,

 $(321)^2$ and $(549)^2$ will have 1 as their units digits. Hence, (ii) and (iii) have 1 as their units digit.

- 4. (i) 2826 being an even number $(2826)^2$ will also be an even number.
 - (*ii*) 7779 being an odd number, (7779)² will also be on odd number.
 - (*iii*) 30018 being an even number, $(30018)^2$ will also be an even number.
 - (*iv*) 8204 being an even number, $(8204)^2$ will also be an even number.
- 5. Since, between n^2 and $(n + 1)^2$, there are 2n nonperfect square numbers. Therefore,
 - (*i*) $(25)^2$ and $(26)^2$ there are $2 \times 25 = 50$ natural number.
 - (*ii*) $(19)^2$ and $(20)^2$ there are $2 \times 19 = 38$ natural numbers.

Mathematics In Everyday Life-8

6. (i) $(65)^2 = (6 \times 7)$ hundred + 25

(*ii*)
$$(95)^2 = (9 \times 10)$$
 hundred + 25
= 9025

$$(iii)(205)^2 = (20 \times 21)$$
 hundred + 25
= 42025

EXERCISE 3.2

1. We know that 2m, $m^2 - 1$, $m^2 + 1$ is a 2m = 8Pythagorean triplet

- $\therefore m = 4$ $\therefore m^2 - 1 = (4)^2 - 1 = 16 - 1 = 15$
 - $m^2 + 1 = (4)^2 + 1 = 16 + 1 = 17$

Hence, 8, 15, 17 is a Pythagorean triplet.

2. Let 2m = 12

 $\therefore m = \frac{12}{2} = 6$ $m^2 - 1 = (6)^2 - 1 = 36 - 1 = 35$ Now, $m^2 + 1 = (6)^2 + 1 = 36 + 1 = 37$ and 12, 35, 37, is a Pythagorean triplet. Hence

- 3. Let 2m = 18
 - $\Rightarrow m = 9$ $\therefore m^2 - 1 = (9)^2 - 1 = 81 - 1 = 80$
 - $m^2 + 1 = (9)^2 + 1 = 81 + 1 = 82$

Hence, 18,80,82 is Pythagorean triplet.

4. If *a*, *b*, *c* are three number where c > a, *b* such that $a^2 + b^2 = c^2$, then (a, b, c) is called Pythagorean triplet.

Thus, $(26)^2 = 676$

 $(10)^2 + (24)^2 = 100 + 576 = 676$

 $(26)^2 = (10)^2 + (24)^2$ \Rightarrow

Hence, 10, 24 and 26 is a Pythagorean triplet.

EXERCISE 3.3

1. (i) Since, ones digit of 6561 is 1, the possible ones digit of the square root may be 1 or 9.

ANSWER KEYS

- (*ii*) Since, ones digit of 24336 is 6, the possible ones digit of the square root may be 4 or 6.
- (*iii*) Since, ones digit of 76129 is 9, the possible ones digit of the square root may be 3 or 7.
- (iv) Since, ones digit of 160801 is 1, the possible ones digit of the square root may be 1 or 9.
- 2. We know that if the units digit of a number is 2, 3, 7 or 8, then it does not have a square root in the set of natural numbers, hence it will not be a perfect square.

Hence (i) 1267, (ii) 608 and (iii) 1990 is not a perfect squares.

- *.*.. $180 = (2 \times 2) \times (3 \times 3) \times 5$
- 3. The number 5 is left unpaired.

2	180
2	90
3	45
3	15
3	5
	1

So, 180 is not a perfect square.

Now, If we multiplied with 5 it should become a perfect square. ie.

$$180 \times 5 = (2 \times 2) \times (3 \times 3) \times (5 \times 5)$$

900 = (2 \times 2) \times (3 \times 3) \times (5 \times 5)

Square root of 900 $= \sqrt{900}$

$$=\sqrt{(2\times2)\times(3\times3)\times(5\times5)}$$

 $= 2 \times 3 \times 5 = 30$

Hence, square root of the new number is 30.

4. (i) We have

(ii) We have

289 - 1 = 288288 - 3 = 285285 - 5 = 280280 - 7 = 273273 - 9 = 264264 - 11 = 253253 - 13 = 240240 - 15 = 225225 - 17 = 208208 - 19 = 189189 - 21 = 168168 - 23 = 145145 - 25 = 120120 - 27 = 9393 - 29 = 6464 - 31 = 3333 - 33 = 0

We have performed subtraction 17 times.

Hence, $\sqrt{289} = 17$.

(iii) We have

169 - 1 = 168
168 - 3 = 165
165 - 5 = 160
160 - 7 = 153
153 - 9 = 144
144 – 11 = 133
133 - 13 = 120
120 - 15 = 105
105 - 17 = 88
88 - 19 = 69
69 - 21 = 48
48 – 23 = 25
25 - 25 = 0

We have performed subtraction 13 times. Hence $\sqrt{169} = 13$.

5. (*i*) 676

$\therefore 676 = 2 \times 2 \times 13 \times 13$	2	676
$\therefore \sqrt{676} = \sqrt{2 \times 2} \times \frac{13 \times 13}{2}$	2	338
= 2 × 13	13	169
= 26	13	13
Hence, $\sqrt{676} = 26$		1

(<i>ii</i>) 1024	
2 1024	
2 512	
2 256	
2 128	
2 64	
2 32	
$\overline{2}$ 16	
$\overline{2}$ 8	
2 4	
2 2	
$\therefore 1024 = 2 \times 2$. × 2 × 2 × 2
$\therefore \sqrt{1024} = \sqrt{2 \times 2} \times 2 \times$	$2 \times 2 \times 2$
$= 2 \times 2 \times 2 \times 2 \times 2$	
= 32	
Hence, $\sqrt{1024} = 32$	3 27225
(<i>iii</i>) 27225	3 9075
$27225 = 3 \times 3 \times 5 \times 5 \times 11 \times 11$	5 3025 5 605
$\therefore \sqrt{27225} = \sqrt{3 \times 3} \times \frac{5 \times 5}{11 \times 11}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= 3 \times 5 \times 11$	$\begin{array}{c c}11 & 121\\\hline 11 & 11\end{array}$
$= 3 \times 5 \times 11$ = 165	1
	I
Hence, $\sqrt{27225} = 165$	2 7744
(<i>iv</i>) 7744	2 3872
$7744 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 10^{-1}$	11 - 2 - 1936
$\sqrt{7444} = \sqrt{2 \times 2} \times 2 \times 2 \times 2 \times 2 \times 11 \times 12$	
$= 2 \times 2 \times 2 \times 11$	2 484
= 88	2 242
Hence, $\sqrt{7744} = 88$	11 121
	11 11
(v) 9604	1
$9604 = 2 \times 2 \times 7 \times 7 \times 7 \times 7$	
$\therefore \sqrt{9604} = \sqrt{2 \times 2 \times 7 \times 7 \times 7 \times 7}$	2 9604
$= 2 \times 7 \times 7$	2 4802
= 98	$\begin{array}{c c} 7 & 2401 \\ \hline 7 & 343 \end{array}$
Hence, $\sqrt{9605} = 98$	$ \begin{array}{c c} 7 & 343 \\ \hline 7 & 49 \end{array} $
	7 49 7 7

$ \sqrt{390625} = \sqrt{5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5} $ $ 5 390625 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5$	(vi) 15625 $15625 = 5 \times 5 \times 5 \times 5 \times 5 \times 5$ $\therefore \sqrt{15625} = \sqrt{5 \times 5 \times 5 \times 5 \times 5} \times 5 \times 5$ $= 5 \times 5 \times 5$ = 125 Hence, $\sqrt{15625} = 125$ (vii) 390625 $200625 = 5 \times $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$390625 = 5 \times $	_
$ \frac{5}{5} \overline{78125} \\ 5 \overline{5} \overline{15625} \\ 5 \overline{5} \overline{3125} \\ 5 \overline{5} \overline{5} \overline{25} \\ 5 \overline{5} \overline{5} \overline{25} \\ 5 \overline{5} \overline{5} \overline{5} \\ 5 $		<u>5</u>
Hence, $\sqrt{390625} = 625$ (viii) 9801 9801 = $3 \times 3 \times 3 \times 3 \times 11 \times 11$ $\sqrt{9801} = \sqrt{3 \times 3 \times 3 \times 3 \times 11 \times 11}$ = $3 \times 3 \times 11$ = 99 Hence, $\sqrt{9801} = 99$ (ix) 99856 99856 = $2 \times 2 \times 2 \times 2 \times 79 \times 79$ $\sqrt{99856} = \sqrt{2 \times 2 \times 2 \times 2} \times 79 \times 79$ $\sqrt{99856} = \sqrt{2 \times 2 \times 2} \times 79 \times 79$ = $2 \times 2 \times 79$ = $2 \times 2 \times 79$ = $2 \times 2 \times 79$ = 316 (x) 11025 $11025 = 3 \times 3 \times 5 \times 5 \times 7 \times 7$ $\sqrt{11025} = \sqrt{3 \times 3 \times 5 \times 5 \times 7 \times 7}$ = $3 \times 5 \times 7$ = $3 \times 5 \times 7$ = 105 3 9801 3 3267 3 1089 3 363 11025 11025 125 125 1	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(viii) 9801 9801 = $3 \times 3 \times 3 \times 3 \times 11 \times 11$ $\sqrt{9801} = \sqrt{3 \times 3 \times 3 \times 3 \times 11 \times 11}$ = $3 \times 3 \times 11$ = 99	3 3267 3 1089 3 363 11 121 11 11
$99856 = 2 \times 2 \times 2 \times 2 \times 79 \times 79$ $\sqrt{99856} = \sqrt{2 \times 2} \times 2 \times 2 \times 79 \times 79$ $= 2 \times 2 \times 79$ $= 316$ $(x) \ 11025$ $11025 = 3 \times 3 \times 5 \times 5 \times 7 \times 7$ $\sqrt{11025} = \sqrt{3 \times 3} \times 5 \times 5 \times 7 \times 7$ $= 3 \times 5 \times 7$ $= 105$ $\frac{2 \ 49928}{2 \ 24964}$ $\frac{2 \ 12482}{2 \ 12482}$ $\frac{2 \ 12482}{2 \ 12482}$ $\frac{3 \ 11025}{3 \ 3675}$ $\frac{3 \ 11025}{5 \ 1225}$ $= 3 \times 5 \times 7$ $\frac{5 \ 245}{7 \ 49}$		2 99856
Hence, $\sqrt{11025} = 105$ $\frac{7}{1}$	$99856 = 2 \times 2 \times 2 \times 2 \times 79 \times 79$ $\sqrt{99856} = \sqrt{2 \times 2} \times 2 \times 2 \times 79 \times 79$ $= 2 \times 2 \times 79$ $= 316$ Hence, $\sqrt{99856} = 316$ (x) 11025 $11025 = 3 \times 3 \times 5 \times 5 \times 7 \times 7$ $\sqrt{11025} = \sqrt{3 \times 3} \times 5 \times 5 \times 7 \times 7$ $= 3 \times 5 \times 7$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

6. $2352 = (2 \times 2) \times (2 \times 2) \times (7 \times 7) \times 3$

The number 3 is left unpaired. So, it is not a perfect square. If we multiplied by 3 it should become a perfect square. So,

$$2352 \times 3 = (2 \times 2) \times (2 \times 2) \times (7 \times 7) = 2 \quad \frac{2}{2} \quad \frac{2352}{2} \\ \times (3 \times 3) = 7056 = (2 \times 2) \times (2 \times 2) \times (7 \times 7) \times \\ (3 \times 3) = \sqrt{7056} = \sqrt{2 \times 2} \times 2 \times 2 \times 7 \times 3 = 84 = \frac{3}{3} \quad \frac{3}{3} = 2 \times 2 \times 7 \times 3 = 84 = \frac{3}{3} \quad \frac{3}{3} = \frac{3}{3} = \frac{3}{3} \quad \frac{3}{3} = \frac{$$

Hence, $\sqrt{7056} = 84$

7. *(i)* 252

$$252 = (2 \times 2) \times (3 \times 3) \times 7$$

The number 7 is left unpaired.
If multiplied by 7 it should be a
perfect square number. So,

$$252 \times 7 = (2 \times 2) \times (3 \times 3) \times (7 \times 7)$$

 $\sqrt{1764} = \sqrt{2 \times 2 \times 3 \times 3 \times 7 \times 7}$
 $= 2 \times 3 \times 7 = 42$
 $\frac{2}{252}$
 $\frac{2}{126}$
 $\frac{3}{3}$
 $\frac{2}{1}$
 $\frac{7}{7}$
 $\frac{7}{1}$
 $\frac{7}{1}$

 $\sqrt{1764} = 42$

Hence, if multiplied by 7, then the given number makes a perfect square and its square root is 42.

(ii) 1458

$$1458 = 2 \times (3 \times 3) \times (3 \times 3) \times (3 \times 3)$$
 2 1458 The number 2 is left unpaired. 3 729 If multiplied by 2, it should be a
perfect square number. So,
 (3×3) 3 243 $(1458 \times 2) = (2 \times 2) \times (3 \times 3) \times (3$

$$\sqrt{2916}$$

$$= \sqrt{2 \times 2} \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$$
$$= 2 \times 3 \times 3 \times 3 \times 3$$
$$\sqrt{2916} = 54$$

Hence, if multiplied by 2, then the given number make a perfect square and its square root is 54.

(*iii*) 768 2 768 $768 = (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times 3$ $\overline{2}$ 384 2 The number 3 is left unpaired. 192 If we multiplied by 3, it should be $\overline{2}$ 96 a perfect square number. So, $\overline{2}$ 48 $768 \times 3 = (2 \times 2) \times (2 \times 2) \times (2 \times 2)$ 2 24 $\times (2 \times 2) \times (3 \times 3)$ 2 12 $2304 = (2 \times 2) \times (2 \times 2) \times (2 \times 2)$ $\overline{2}$ 6 $(2 \times 2) \times (3 \times 3)$ 3 3 1 $\sqrt{2304} = \sqrt{2 \times 2} \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$ $\sqrt{2304} = 2 \times 2 \times 2 \times 2 \times 3$

$$\sqrt{2304} = 48$$

Hence, if multiplied by 3, then the given number make a perfect square number and its square root is 48.

8. We know that, if the units digit of a number is 2, 3, 7 or 8, then it does not a perfect square number.

Therefore,

(*i*) 1053, (*ii*) 628 and (*iii*) 657 are not a perfect square number.

While 3481 is a perfect square number.

EXERCISE 3.4

1. The least number divisible by each of the numbers 6, 9 and 15 is their L.C.M.

L.C.M of 6, 9 and 15 is	3	6,9,15
$3 \times 2 \times 3 \times 5 = 90$		2,3,5
Now, $90 = 2 \times (3 \times 3) \times 5$	I	, ,

The numbers 2 and 5 are not in pair for the number to be a perfect square each factor of the must have a pair. So,

To make pairs of 2 and 5, the number 90 has to be multiplied by 5×2 ie. 10.

Hence, $90 \times 10 = 900$ is the required square number.

2. $5392 = (2 \times 2) \times (2 \times 2) \times 337$

...

The number 337 is left unpaired. So the given number must be divided by 337 to get a square number.

2 1348 = 16 2 674 337

Now,
$$\sqrt{16} = \sqrt{2 \times 2 \times 2 \times 2} = 4$$

Hence, square root of new number is 4.

2 |

 $\overline{2}$

5392

2696

- **3.** The least number which is divisible by each of the numbers 4, 9 and 10 is their L.C.M.
 - L.C.M. of 4, 9 and 10 2 4,9,10 $=2 \times 2 \times 9 \times 5$ 2,9, 5 = 180

Now, $180 = (2 \times 2) \times (3 \times 3) \times 5$

The number 5 is left unpaired. For the number to be a perfect square, each factor of the number must have a pair, to make pair of the number, 180 has to be multiplied by 5.

Hence, the required number is $180 \times 5 = 900$.

4. The prime factors of 2925 3 | 2925 $= (3 \times 3) \times (5 \times 5) \times 13$ 3 975 The number 13 is left unpaired. 5 325 So, the given number must be 5 65 divided by 13 to get a square 13 13 number. 1 $\therefore \frac{2925}{13} = 225 \text{ is a square number.}$

Hence, 13 is the required smallest number.

- 5. Let the one number be *x*, then the other number will be 13x.
 - Then, $x \times 13x = 2197$ $13x^2 = 2197$ \Rightarrow 13 | 169 $x^2 = \frac{2197}{13} = 169$ 13 13 \Rightarrow 1 $x = \sqrt{169}$ \Rightarrow $=\sqrt{13\times13}$

$$x = 13$$

: One number is 13 and the other number is 169. Hence, required numbers are 13 and 169.

6. Let the number be *x*.

Other number will be 3x. *.*..

Then,
$$x \times 3x = 5292$$

$$\Rightarrow \quad 3x^2 = 5292$$

$$\Rightarrow \quad x^2 = \frac{5292}{3} = 1764$$

$$\Rightarrow \quad x = \sqrt{1764}$$

$$x = \sqrt{2 \times 2 \times 3 \times 3 \times 7 \times 7}$$

$$x = 2 \times 3 \times 7$$

$$2 \quad 1764$$

$$2 \quad 882$$

$$3 \quad 441$$

$$3 \quad 147$$

$$7 \quad 49$$

$$7 \quad 7$$

$$1$$

- x = 42
- \therefore One number is 42 and the other number is 126. Hence, required numbers are 42 and 126.

Mathematics In Everyday Life-8

- 7. Length of a rectangular field = 81 m Breadth of a rectangular field = 49 m
- \therefore Area of rectangular field = length × breadth 04 10

$$= 81m \times 49m$$

= (81 × 49)m²
= 3969 m²

Since, area of square = area of rectangular field

$$\Rightarrow (Side)^2 = 3969 m^2$$

$$\Rightarrow side = \sqrt{3969}m$$

$$= \sqrt{3 \times 3 \times 3 \times 3 \times 7 \times 7} m$$

$$= (3 \times 3 \times 7)m$$

$$= 63 m$$
Hence, side of the square is 63 m

Hence, side of the square is 63 m.

8. Let number of students in a school be *x*, Then,

	$x \times x = 11025$	3	11025
\Rightarrow	$x^2 = 11025$	3	3675
\Rightarrow	$x = \sqrt{11025}$	5	1225
		5	245
\Rightarrow	$x = \sqrt{3 \times 3} \times \underbrace{5 \times 5}_{} \times \underbrace{7 \times 7}_{}$	7	49
	$x = 3 \times 5 \times 7$	7	7
	<i>x</i> = 105		1

Hence, there were 105 students in the school.

9. $27783 = (3 \times 3) \times (3 \times 3) \times (7 \times 7) \times 7$ The number 7 is left unpaired. So, 7 is multiplied to the number to make a perfect square number.

3	27783
3	9261
3	3087
3	1029
7	343
7	49
7	7
	1

10. Let the number be *x*. Then, the other number is 2205

x
Therefor,
$$\frac{x}{\frac{2205}{x}} = \frac{9}{5}$$

 $\Rightarrow \frac{x^2}{2205} = \frac{9}{5}$
 $x^2 = \frac{9}{5} \times 2205$
 $x^2 = 9 \times 441$
 $x^2 = 3969$
 $\frac{3}{3} \frac{3969}{3} \frac{3969}{3} \frac{31323}{3} \frac{3}{441} \frac{3}{3} \frac{147}{7} \frac{7}{7} \frac{7}{7}$

 $\Rightarrow \qquad x = \sqrt{3969}$ $x = \sqrt{3 \times 3} \times 3 \times 3 \times 7 \times 7$ $= 3 \times 3 \times 7$ x = 63

Hence, the required numbers are 63 and 35.

11. Let the number be *x*. Then, the other number is

$$\frac{4046}{x}$$
. Therefore,

$$\frac{\frac{x}{4046}}{x} = \frac{7}{2}$$

$$\Rightarrow \frac{x^2}{4046} = \frac{7}{2}$$

$$x^2 = \frac{7}{2} \times 4046$$

$$= 7 \times 2023$$

$$x^2 = 14161$$

$$\Rightarrow x^2 = 7 \times 7 \times 17 \times 17$$

$$x = \sqrt{7 \times 7 \times 17 \times 17}$$

$$x = 7 \times 17$$

$$x = 7 \times 17$$

Hence, the required numbers are $\frac{3}{3}$

12. (*i*) 2925

- $2925 = (3 \times 3) \times (5 \times 5) \times 13$ The number 13 is left unpaired. So, the given is divided by 13 to get a square number.
- So, $\frac{2925}{13} = 225$ $\sqrt{225} = \sqrt{3 \times 3 \times 5 \times 5}$

$$\sqrt{225} = 3 \times 5 = 15$$

(*ii*) 2800

 $2800 = (2 \times 2) \times (2 \times 2) \times (5 \times 5) \times 7$

The number 7 is left unpaired. So, the given number is divided by 7 to get a square number. So,

 $\therefore \frac{2800}{7} = 400$ is a square number.

$$2 \quad 400$$

$$2 \quad 200$$

$$2 \quad 100$$

$$2 \quad 50$$

$$5 \quad 25$$

$$5 \quad 5$$

$$5 \quad 5$$

$$1$$

$$\sqrt{400} = \sqrt{2 \times 2 \times 2 \times 2 \times 5 \times 5}$$

$$\sqrt{400} = 2 \times 2 \times 5$$

$$= 20$$

(iii) 2645

2645 = 5 × (23 × 23) The number 5 is left unpaired. So, the given number is divided by 5 to get a square number.

$\therefore \ \frac{2645}{5} = 529$	23	529
$\sqrt{529} = \sqrt{23 \times 23}$	23	23
$\sqrt{329} = \sqrt{23 \times 23}$		1

5

23

23

2645

529

23

1

 $\sqrt{529} = 23$

EXERCISE 3.5

	99
9	$\overline{9801}$
	81
189	1701
	1701
	0

 $\therefore \sqrt{9801} = 99$

2.

1.

2925

5

5

13

3

3

5

5

 $\overline{2}$

2

2

5

5

7

975

325

65

13

1

225

75

25

5

1

2 | 2800

1400

700

350

175

35

7

1

2	$ \begin{array}{r} 2 3 4 \\ \hline 0 \\ \overline{5} \\ 4 \\ \hline \end{array} $
43	147
	129
464	1856
	1856
	0
	1

 $\therefore \quad \sqrt{54756} = 234$

$$93 \\
9 \\
8649 \\
81 \\
183 \\
549 \\
549 \\
0$$

$$\therefore \sqrt{8649} = 93$$

4.

	67
6	$\overline{44}\overline{89}$
	36
127	889
	889
	0

$$\therefore \sqrt{4489} = 67$$

5.

	57
5	$\overline{32}\overline{49}$
	25
107	749
	749
	0

$$\therefore \quad \sqrt{3249} = 57$$

6.

	1 0 1
1	$\overline{01}\overline{02}\overline{01}$
	1
201	0201
	201
	0

$$\therefore \sqrt{10201} = 101$$

7.

			1 1 0
		1	$\overline{01}\overline{21}\overline{00}$
			1
		21	21
			21
			0 0
			0 0
			0
<i>:</i> .	$\sqrt{12100} =$	110	

	 1

	1
26	172
	156
325	1625
	1625
	0

$\therefore \quad \sqrt{27225} = 165$

9.

8.

	1 4 3
1	$\overline{02}\overline{04}\overline{49}$
	1
24	104
	96
283	849
	849
	0

 $\therefore \quad \sqrt{20449} = 143$

1	\mathbf{n}
L	υ.

	1 7 1
1	$\overline{02}\overline{92}\overline{41}$
	1
27	192
	189
341	341
	341
	0

 $\therefore \quad \sqrt{29241} = 171$

11.

	1 6 3
1	$\overline{02}\overline{65}\overline{69}$
	1
26	165
	156
323	969
	969
	0
	•

 $\therefore \quad \sqrt{26569} = 163$

	2 3 9
2	$\overline{05}\overline{71}\overline{21}$
	4
43	171
	129
469	4221
	4221
	0

 $\therefore \quad \sqrt{57121} = 239$

EXERCISE 3.6

- **1.** (*i*) $\sqrt{36864} = \sqrt{036864}$, square root will have 3 digits.
 - (*ii*) $\sqrt{28900} = \sqrt{028900}$, square root will have 3 digits.
 - (*iii*) $\sqrt{106276} = \sqrt{106276}$, square root will have 3 digits.
 - (*iv*) $\sqrt{4507129} = \sqrt{04507129}$, square root will have 4 digits.
 - (v) $\sqrt{32400} = \sqrt{032400}$, square root will have 3 digits.
 - (vi) $\sqrt{5625} = \sqrt{5625}$, square root will have 2 digits.
 - (*vii*) $24336 = \sqrt{024336}$, square root will have 3 digits.
- **2.** The greatest five digit number is 99999. Let us find square root of 99999.

From the square root of 99999, we can notice that $(316)^2$ is less then 99999 by 143.

If we subtracted the remainder 143 from the number, we get a perfect square number.

	31 6
3	$\overline{09}\overline{99}\overline{99}$
	9
61	99
	61
626	3899
	3756
	143

 \therefore 99999 – 143 = 99856 is the required number. Hence, the greatest five digit number is 99856 **3.** Least number of four-digits is 1000.

	3 1
6	$\overline{10}\overline{00}$
	9
61	100
	61
	39

also, $(32)^2 = 1024$

Now, $(32)^2 - 1000 = 1024 - 1000 = 24$

We notice that $(31)^2 < 1000$, Thus, if we added 24 to 1000, it becomes a perfect square.

Hence, the smallest four digit square number is 1024.

4. (*i*)

	7 1
7	$\overline{50}\overline{45}$
	49
141	145
	141
	4

 $(71)^2 < 5045$ by 4. So, in order to get a perfect square number we subtract 4 from 5045.

	1	3	5
1	$\overline{018}$	32	65
	1		
23	8	32	
	6	59	
265	1	130	65
	1	132	25
		4	40

 $(135)^2$ is less than 18265 by 40. So, in order to get a perfect square number, we subtract 40 from 18265.

(iii)	

4 4 1
$\overline{19\overline{44}\overline{91}}$
16
344
336
891
881
10

(441)² is less than 194491 by 10. So, in order to get a perfect square number, we subtracted 10 from 194491.

$$\begin{array}{r}
1 & 6 & 2 \\
1 & \overline{026535} \\
1 \\
26 & 165 \\
156 \\
322 & 935 \\
644 \\
291 \\
\end{array}$$

(162)² < 26535 by 291. So, in order to get a perfect square number, we subtracted 291 from 26535.

5. (i) The given number is 3720.

$$\begin{array}{r}
 6 \quad 1 \\
 6 \quad \overline{3720} \\
 36 \\
 12 \quad 120 \\
 \overline{121}$$

 $(60)^2 = 3600, (61)^2 = 3721$ $(61)^2 > 3720 > (60)^2$ Thus, $(61)^2 - 3720 = 3721 - 3720 = 1$ Hence, the number to be added is 1.

(ii) The given number is 115580.

0	3 3 9	
3	$\overline{115580}$	
5		
	9	
63	255	
	189	
669	6680	
	6021	
	6 5 9	
Also $(339)^2 = 114921$		
$(340)^2 = 115600$		
$(340)^2 > 115580 > (339)^2$		
Thus, $(340)^2 - 115580 = 115600 - 115580 = 20$		
Hence, the number to be added is 20.		
Tience, the number to be added is 20.		

(iii) The given number is 4931.

$$\begin{array}{r}
7 & 0 \\
7 & \overline{4931} \\
49 \\
\hline
14 & 31
\end{array}$$

Since,

 $(70)^2 = 4900$ and $(71)^2 = 5041$.

Mathematics In Everyday Life-8

:. $(71)^2 > 4931 > (70)^2$ Thus, $(71)^2 - 4931 = 5041 - 4931 = 110$ Hence, the given number to be added is 110.

EXERCISE 3.7

1. (i)
$$\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{25}$$

 $4 \frac{4}{16} \frac{5}{25}}{25} \frac{5}{25}}{25}$
 $= \frac{4}{5}$
Hence, $\sqrt{\frac{16}{25}} = \frac{4}{5}$
(ii) $\sqrt{6\frac{1}{4}} = \sqrt{\frac{25}{4}}$
 $5 \frac{5}{25} \frac{2}{25}}{25} \frac{2}{4} \frac{2}{04}}{4}$
 $= \frac{5}{4}$
Hence, $\sqrt{6\frac{1}{4}} = \frac{5}{4}$
(iii) $\sqrt{27\frac{1}{25}} = \sqrt{\frac{676}{25}}$
 $\frac{2}{46} \frac{676}{276}}{\frac{276}{16}} \frac{5}{25}}{25}$
 $= \frac{26}{5}$
Hence, $\sqrt{27\frac{1}{25}} = \frac{26}{5}$

2. (i) The given fraction is $\frac{80}{405}$. On simplifying, $\frac{80}{405} = \frac{16}{81}$ $\sqrt{\frac{80}{405}} = \sqrt{\frac{16}{81}} = \frac{\sqrt{16}}{\sqrt{81}}$ $\frac{4}{16} \frac{16}{16} = 9 \frac{9}{81}$ $\sqrt{\frac{80}{405}} = \sqrt{\frac{16}{81}} = \frac{4}{9}$

(*ii*)
$$\sqrt{\frac{1225}{12321}} = \frac{\sqrt{1225}}{\sqrt{12321}}$$

 $3 \overline{) 1225} = \frac{1}{\sqrt{12321}}$
 $3 \overline{) 1225} = \frac{1}{\sqrt{12321}}$
 $9 = \frac{1}{1012321}$
 $9 = \frac{1}{212321}$
 $21 = 23$
 $21 = 23$
 $221 = 221$
 $221 = 221$
 $221 = 221$
 0
Hence, $\sqrt{\frac{1225}{12321}} = \frac{35}{111}$

(*iii*)
$$\sqrt{1\frac{155}{169}} = \sqrt{\frac{324}{169}}$$

	$ \begin{array}{r} 1 & 8\\ 1 & \overline{0324}\\ 1 \\ 28 & 224\\ 224 \\ 0 \end{array} $	$ \begin{array}{r} 1 & 3\\ 1 & \overline{0169}\\ 1 \\ 23 & 69\\ 69\\ 0 \end{array} $
(<i>iv</i>)	Hence, $\sqrt{1\frac{155}{169}} = \frac{1}{\sqrt{6}}$ $\sqrt{6\frac{145}{256}} = \sqrt{\frac{1681}{256}}$	18 13
	$ \begin{array}{r} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{0}{145} = \frac{145}{256} = \frac{145}{10201}$	_
(v)	Y 121 Y 121	-
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Hence, $\sqrt{84\frac{37}{121}} =$	$=\frac{101}{11}$
(vi)	$\sqrt{\frac{1183}{2023}} = \sqrt{\frac{169}{289}} (B$	By Simplification)
	$ \begin{array}{c c} 13\\ 1 \overline{0169}\\ 1\\ 23 69\\ 69\\ 0\\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Hence, $\sqrt{\frac{1183}{2023}} = \frac{1}{2023}$	13 17

3. Area of a square field = $(side)^2$

$$\Rightarrow (side)^2 = 23 \frac{394}{729} \text{ sq.m}$$

$$\Rightarrow \text{ side} = \sqrt{23\frac{394}{729}} = \sqrt{\frac{17161}{729}}$$

$$\frac{1}{1} \frac{1}{017161} \frac{2}{61} \frac{27}{0729}$$

$$\frac{1}{23} \frac{71}{69} \frac{4}{47} \frac{4}{329}$$

$$\frac{69}{261} \frac{261}{261} 0$$

Hence, side of a square field = $\frac{131}{27}$ m = $4\frac{23}{27}$ m

4. \therefore side of the square field = $\sqrt{\text{Area}}$

$=\sqrt{35}$	- = -	041		
	71			12
7	$\overline{50}\overline{41}$		1	$\overline{01}\overline{44}$
	49			1
141	141		22	44
	141			44
	0			0

Hence, side of the square field = $\frac{71}{12}$ m = $5\frac{11}{12}$ m

5. (i)
$$\sqrt{80\frac{244}{729}} = \sqrt{\frac{58564}{729}} = \frac{\sqrt{58564}}{\sqrt{729}}$$

$$2\frac{2}{058564} + 2\frac{27}{0729}$$

$$4\frac{4}{44} + 185 + 47 + 329$$

$$47 + 329 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$329 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

$$482 + 964 + 47 + 329$$

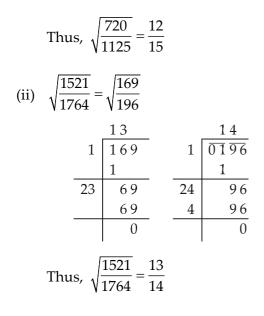
$$482 + 964 + 329$$

$$482 + 964 + 329$$

$$482 + 964 + 329$$

$$482 + 964 + 329$$

$$482 + 964 + 329$$


 $\begin{array}{c|c}
6 & \overline{3721} \\
36 \\
21 & 121
\end{array}$ 121 121 0

7.

6.

	Hence, $\sqrt{75\frac{46}{49}} = \frac{61}{7}$	$=8\frac{5}{7}$
(iii)	$\sqrt{\frac{841}{1024}} = \frac{\sqrt{841}}{\sqrt{1024}}$	2.2
	$ \begin{array}{r} 29 \\ 2 \overline{)0841} \\ 4 \\ 49 \overline{)441} \end{array} $	$ \begin{array}{r} 3 \overline{1024} \\ 9 \\ 62 124 \end{array} $
	$ \begin{array}{r} 49 441 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Hence, $\sqrt{\frac{841}{1024}} = \frac{29}{32}$	
. (i)	$\frac{\sqrt{441} + \sqrt{169}}{\sqrt{441} - \sqrt{169}}$	
	$ \begin{array}{c c} 2 \\ \hline 0 \\ \hline 4 \\ \hline 41 \\ \hline 41 \end{array} $	$ \begin{array}{c c} 1 & 3 \\ 1 & \overline{0169} \\ 1 \end{array} $
	$ \begin{array}{c c} 41 & 41 \\ & 41 \\ \hline & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Thus, $\frac{\sqrt{441} + \sqrt{169}}{\sqrt{441} - \sqrt{169}}$	$=\frac{21+13}{21-13}=\frac{34}{8}=\frac{17}{4}$
(ii)	$\frac{\sqrt{576} + \sqrt{196}}{\sqrt{576}}$	
	$\sqrt{576} - \sqrt{196}$ $2 \frac{24}{0566}$ 4 44 176	$ \begin{array}{c c} 1 $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 96 96 0
	$\sqrt{576} = 24$ Thus,	$\sqrt{196} = 14$
	$\frac{\sqrt{576} + \sqrt{196}}{\sqrt{576} - \sqrt{196}} =$	$=\frac{24+14}{24-14}=\frac{38}{10}=\frac{19}{5}$
. (i)	$\sqrt{\frac{720}{1125}} = \sqrt{\frac{144}{225}} = \sqrt{\frac{1}{2}}$	$\frac{\overline{44}}{25}$ (On simplification)
	$1 \boxed{\begin{array}{c} 1 \\ \hline 0 \\ 1 \\ \hline 1 \end{array}}$	$ \begin{array}{c c} 1 & 5\\ 1 & \overline{0225}\\ 1 \end{array} $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Mathematics In Everyday Life-8

EXERCISE 3.8

1. (*i*)

	2. 2 5
2	$\overline{05.06}\overline{25}$
	4
42	106
	84
445	2225
	2225
	0

Hence,
$$\sqrt{5.0625} = 2.25$$

(ii)

	5.6
5	31.36
	25
106	636
	636
	0

Hence,
$$\sqrt{31.36} = 5.6$$

	7.2
7	$\overline{51.84}$
	49
142	284
	284
	0

Hence, $\sqrt{51.84} = 7.2$

(<i>iv</i>)	
---------------	--

	9.8
9	98.01
	81
189	1701
	1701
	0

Hence,
$$\sqrt{98.01} = 9.8$$

(v)

	0.39
0	$\overline{00}.\overline{15}\overline{21}$
	00
3	15
	9
69	621
	621
	0

Hence,
$$\sqrt{0.1521} = 0.39$$

(vi)

	2 2.3
2	$\overline{04}\overline{97.29}$
	4
42	97
	84
443	1329
	1329
	0

Hence,
$$\sqrt{497.29} = 22.3$$

2. (*i*)

		1.73205
	1	$03.\overline{00}\overline{00}\overline{00}\overline{00}\overline{00}\overline{00}$
		1
	27	2 00
		1 89
	343	1100
		1029
	3462	7100
		6924
	346405	1760000
		1732025
		27975
Henc	,	$\sqrt{3} = 1.73205$
		$\sqrt{3} = 1.732$

1	٠	•	`
1	1	1	۱
٠.	ı	ı	,
· ·			/

	2.6457
2	$\overline{07}.\overline{00}\overline{00}\overline{00}\overline{00}$
	4
46	3 00
	2 76
524	2400
	2096
5285	30400
	26425
5290	397500
	370349
	27151

Hence, $\sqrt{7} = 2.6457$

(iii)

	• • • •
٦	√7 = 2.646
	3.3166
3	$\overline{11.00}\overline{00}\overline{00}\overline{00}$
	9
63	2 00
	1 89
661	1100
	661
6626	43900
	39756
66326	414400
	397956
	16444

 $\sqrt{11} = 3.3166$

Hence,

		٦	/11 = 3.317
3	<i>(i)</i>		0.9486
0.	(')	0	$0.\overline{90}\overline{00}\overline{00}\overline{00}$
			0
		9	90
			81
		184	900
			736
		1888	16400
			15104
		18966	129600
			113796
			15804
	Hence,	٦	$\sqrt{0.9} = 0.9486$
	or	٦	$\sqrt{0.9} = 0.949$

(<i>ii</i>) $\sqrt{\frac{7}{8}} = \sqrt{0.875}$		
	0.9354	
C		
	0	
9	+	
,	81	
183		
100	549	
1865		
1000	9325	
18704		
10704		
	74816 2684	
	2004	
<u>.</u>	$\sqrt{\frac{7}{8}} = 0.9354$	
Hence,	$\sqrt{\frac{7}{8}} = 0.935$	
(<i>iii</i>) $\sqrt{4\frac{2}{3}} = \sqrt{\frac{14}{3}} =$	$4.\overline{66666666666666666666666666666666666$	
	$2.1602 \\ 04.\overline{666666666}$	
2	04.66666666	
	4	
41	66	
	41	
426	2566	
	2556	
43202	106666	
	86404	
	20262	
γ 5	$\sqrt{4.6666666} = 2.1602$	
Hence, $\sqrt{4\frac{2}{3}}$	= 2.160	
$(iv) \sqrt{\frac{3}{7}} = \frac{\sqrt{3}}{\sqrt{7}}$		
We have, $\sqrt{3}$	$= 1.732$ and $\sqrt{7} = 2.646$	
$\sqrt{3}$ 1	732	
$\therefore \qquad \sqrt{\frac{3}{7}} = \frac{1}{2}.$	$\frac{732}{646} = 0.6545$	
Hence, $\sqrt{\frac{3}{7}} =$	0.655	

Mathematics In Everyday Life-8

4. (*i*) $\sqrt{0.021609}$

LC	09	
		0.147
	0	$0.\overline{02}\overline{16}\overline{09}\overline{00}$
		0
	1	02
		1
	24	116
		96
	287	2009
		2009
		0

Hence,
$$\sqrt{0.021609} = 0.147$$

(*ii*) $\sqrt{0.00155236}$

0.0394					
0	$00.\overline{00}\overline{15}\overline{52}\overline{36}$				
	0				
0	00				
	00				
3	15				
	9				
69	652				
	621				
784	3136				
	3136				
	0				
	1				

Hence, $\sqrt{0.00155236} = 0.0394$

Let the fraction be <i>x</i> . Then		0.42
$x \times x = 0.1764$	0	$0.\overline{17}\overline{64}$
\Rightarrow $x^2 = 0.1764$		0
	4	17
$x = \sqrt{0.1764}$		16
x = 0.42	82	164
42 21		164
$=\frac{1}{100}=\frac{1}{50}$		0
	21 ່	

Hence, the required fraction is $\frac{-1}{50}$.

6. Let the fraction be *x*. Then,

$$x \times x = 0.7225$$

$$x^{2} = 0.7225$$

$$x = \sqrt{0.7225}$$

$$x = 0.85$$

$$= \frac{85}{100} = \frac{17}{20}$$
Hence, required fraction is $\frac{17}{20}$.

- 7. Area of a square field = 1892.25 sq.m
 - \therefore Area of a square field = (Side)²

$$\Rightarrow$$
 (side)² = 1892.25

side =
$$\sqrt{1892.25}$$

4 3.5
4 $\overline{1892.25}$
16
83 292
249
865 4325
4325
0

∴ side = 43.25 m

Hence, side of the square field = 43.25 m

- 8. Area of a square field = 37056.25 sq.m
 - \therefore Area of square field = (Side)²
 - \Rightarrow (side)² = 37056.25

$$\Rightarrow$$
 side = $\sqrt{37056.25}$

	192.5
1	03 70 56.25
	1
29	2 70
	2 61
382	956
	764
3845	192 25
	192 25
	0

∴ side = 192.50 m

Hence, side of the square field = 192.50 m

EXERCISE 3.9

1. $\sqrt{29}$

Look at the table, the entry in the column of $\sqrt{29}$ is 5.385.

$$\therefore \quad \sqrt{29} = 5.385$$

2. $\sqrt{47}$

Look at the table, the entry in the column of $\sqrt{47}$ is 6.856

$$\therefore \qquad \sqrt{47} = 6.856 \cdot$$

Answer Keys

5.

3. $\sqrt{78}$

Look at the table, the entry in the column of $\sqrt{78}$ is 8.832.

$$\therefore \qquad \sqrt{78} = 8.832 \cdot$$

4. $\sqrt{84}$

6.

8.

9.

Look at the table, the entry in the column of $\sqrt{84}$ is 9.165.

 $\therefore \qquad \sqrt{84} = 9.165 \, \cdot$

5. $\sqrt{1183} = \sqrt{169 \times 7} = 13\sqrt{7}$ (: $\sqrt{169} = 13$) = 13 × 2.646 (from table $\sqrt{7} = 2.646$) = 34.398

Hence, $\sqrt{1183} = 34.398$

 $\sqrt{405} = \sqrt{81 \times 5} = 9\sqrt{5} \quad (\therefore \sqrt{81} = 9)$ $= 9 \times 2.236$ (from table $\sqrt{5} = 2.236$)

= 20.124

= 28.302

 $\sqrt{250} = \sqrt{25 \times 10} = 5\sqrt{10}$

 $= 5 \times 3.162$

= 15.81

 $\sqrt{378} = \sqrt{9 \times 42} = 3\sqrt{42}$

 $= 3 \times 6.481$

= 19.443

(from table $\sqrt{89}$

(from table $\sqrt{10}$

(from table $\sqrt{42}$

Hence,
$$\sqrt{405} = 20.124$$

Hence, $\sqrt{801} = 28.302$

Hence, $\sqrt{250} = 18.81$

7.
$$\sqrt{801} = \sqrt{9 \times 89} = 3\sqrt{89}$$

= 3 × 9.434

 $= \frac{\sqrt{9} \times \sqrt{169}}{10}$ = $\frac{3.00 \times 13.00}{10}$ = $\frac{39}{10} = 3.9$ Hence, $\sqrt{15.21} = 3.9$ 11. $\sqrt{21.92} = \sqrt{\frac{2192}{100}}$ = $\sqrt{\frac{16 \times 137}{100}}$ = $\frac{4}{10} \sqrt{137}$ = $\frac{4}{10} \times 11.705$ (from table $\sqrt{137} = 11.705$)

 $\sqrt{15.21} = \sqrt{\frac{1521}{100}} = \frac{\sqrt{9 \times 169}}{\sqrt{100}}$

10.

$$=\frac{4 \times 11.705}{10} = 4.682$$
$$= 4.68$$

Hence, $\sqrt{21.92} = 4.68$

$$=9.434) 12. \sqrt{13.14} = \sqrt{\frac{1314}{100}} = \sqrt{\frac{9 \times 146}{100}} \\ = \frac{3}{10}\sqrt{146} \\ = \frac{3}{10}(\sqrt{2} \times \sqrt{73}) \\ = 3.162) = \frac{3}{10}(1.414 \times 8.544) \\ \text{(from table } \sqrt{2} = 1.414 \& \sqrt{73} = 8.544) \\ = \frac{3}{10} \times 12.081 \\ = \frac{36.244}{10} = 3.624 \\ \text{Hence, } \sqrt{13.14} = 3.62 \end{aligned}$$

Mathematics In Everyday Life-8

Hence, $\sqrt{378} = 19.443$

13.
$$\sqrt{83.17} = \sqrt{\frac{8317}{100}}$$

For $\sqrt{83.47}$, we find approximate difference
between $\sqrt{84}$ and $\sqrt{83}$.
 $\sqrt{84} = 9.165$ and $\sqrt{85} = 9.110$ (from table)
 $\sqrt{84} - \sqrt{83} = 9.165 - 9.110 = 0.055$
For the difference of 1 (= 84 - 83), the
difference between $\sqrt{84}$ and $\sqrt{83} = 0.055$
For the difference $0.47 = 0.055 \times 0.47 = 0.0259$
 $\therefore \sqrt{83.47} = 9.110 + 0.0259$
 $= 9.1359$
Hence, $\sqrt{83.17} = 9.14$
14. $\sqrt{59.45} = \sqrt{\frac{5945}{100}} = \sqrt{\frac{237}{4}}$
 $= \frac{1}{2}(\sqrt{3} \times \sqrt{79})$
 $= \frac{1}{2} \times (1.732 \times 8.888)$
 $= \frac{1}{2} \times 15.394$
 $= 7.697$
Hence, $\sqrt{59.45} = 7.61$
15. $\sqrt{83.45} = \sqrt{\frac{8345}{100}}$
 $= \sqrt{\frac{333}{4}}$
 $= \frac{\sqrt{3} \times \sqrt{111}}{\sqrt{4}}$
 $= \frac{1.732 \times 10.536}{2}$
 $(\because \sqrt{3} = 1.732, \sqrt{111} = 10.536)$

Hence, $\sqrt{83.45} = 9.124$

MULTIPLE CHOICE QUESTIONS

- **1.** $\sqrt{390625}$, square root will have 3 digits. Hence, option (a) is correct.
- **2.** We have, between n^2 and $(n + 1)^2$, there are 2n natural numbers. So, between $(11)^2$ and $(12)^2$ there are $2 \times 11 = 22$ natural numbers. Hence, option (c) is correct.
- (11111)² = 11111 × 11111
 = 123454321
 Hence, option (a) is correct.

4.
$$\sqrt{1.6} \times \sqrt{1.6} = \sqrt{1.6 \times 1.6}$$

= 1.6

Hence, option (b) is correct.

5. $\sqrt{0.8} \times \sqrt{1.8} = \sqrt{0.8 \times 1.8} = \sqrt{1.44}$ = 1.2

Hence, option (c) correct.

6.

	14
1	$\overline{02} \overline{02}$
	1
24	1 02
4	96
	6

 $(14)^2 = 196 \& (15)^2 = 225$ 206 > $(14)^2$ by 6.

So, $202 - (14)^2 = 202 - 196 = 6$

Thus, the number 6 must be subtracted from 202 to make it a perfect square.

Hence, option (a) is correct.

7.
$$\sqrt{0.9} = \sqrt{\frac{9}{10}} = \frac{\sqrt{9}}{\sqrt{10}} = \frac{3}{3.162}$$

(from table $\sqrt{10} = 3.152$)

= 0.94

Hence, option (b) is correct.

8.

$$\begin{array}{c}
21\\
\overline{04}\,\overline{35}\\
4\\
41\\
\overline{35}\\
41\\
\overline{41}\\
\overline{35}\\
41\\
\overline{35}$$

Since, $(20)^2 = 480$ and $(21)^2 = 441$ So, $(20)^2 < 435 < (21)^2$ $(21)^2 - 435 = 441 - 435 = 6$ *.*. Thus, the number to be added is 6. Hence, option (d) is correct. 9. (7, 9, 11) $(11)^2 = 121$ $7^2 + 9^2 = 49 + 81 = 130$ $(11)^2 < 7^2 + 9^2$ *.*.. (8, 15, 17) $(17)^2 = 289$ $8^2 + 15^2 = 64 + 225 = 289$ $(17)^2 = 8^2 + 15^2$, (It is a Pythagorean triplet) (17, 21, 29) $(29)^2 = 841$ $(17)^2 + (21)^2 = 289 + 441$ = 730 $(29)^2 > (17)^2 + (21)^2$ *.*.. And (2, 3, 5) $5^2 = 25$ $2^2 + 3^2 = 4 + 9 = 13$ $5^2 > 2^2 + 3^2$ *.*..

Hence, option (b) is correct.

10. We have the numbers ends with 1, 9, 4, 5, 6 are perfect squares. So, 441 is a perfect square. Hence, option (b) is correct.

3 | 1875 **11.** $1875 = 3 \times (5 \times 5) \times (5 \times 5)$ 5 625 There are the number 3 is left 5 unpaired 5 So, the given number should be 5

divided by 3 to make it perfect square.

Hence, option (c) is correct.

- **12.** In the following number 6084 end with digit 4 (even). So its square ends with even digit. Hence, option (b) is correct.
- **13.** If a number has 1 or 9 in the unit place, then its square ends with 1.
 - $(61)^2$ and $(109)^2$ end with unit digit 1. *.*..

Hence option (b) and (d) is correct.

2 72 14. $72 = 2 \times (2 \times 2) \times (3 \times 3)$ $\overline{2}$ 36

- The number 2 is left unpaired.
- 2 ... The given number must be 3 multiplied by 2 obtain a perfect square. 3

Mathematics In Everyday Life-8

15.	Area	of	а	square	field	=	196	sq.m
-----	------	----	---	--------	-------	---	-----	------

... Area of square field = $(side)^2$

$$\Rightarrow$$
 (side)² = 196 sq.m

$$\Rightarrow$$
 side = $\sqrt{196}$ m

 $=\sqrt{2\times2\times7\times7}$

side = 14 m

Hence, option (d) is correct.

MENTAL MATHS CORNER

A. True or False:

1. The square of a prime number is prime.

(False)

- 2. There is no square number between 50 and 60. (True)
- 3. All square numbers are positive. (True)
- 4. The product of two square numbers is a square number. (True)
- 5. The difference between two square numbers is a square number. (False)
- 6. The sum of two square numbers is a square number. (False)
- 7. A number ending with even number of zeros is always a perfect square. (False)
- 8. The square of a natural number is either a multiple of 3 or exceeds. The multiple of 3 by 1. (True)

B. Fill in the blanks:

- 1. If $\sqrt{x} = y$; then $y^2 = x$.
- 2. Upto 100, there are only <u>10</u> numbers which are perfect squares.
- 3. A rational number whose square is $\frac{81}{64}$ is

$$\frac{9}{8}$$

$$\therefore \qquad \sqrt{\frac{81}{84}} = \sqrt{\frac{9 \times 9}{8 \times 8}} = \frac{9}{8}$$

- 4. The number 57 and 246 when divided by 4 leave the remainder <u>1</u> and <u>2</u> respectively.
- 5. The sum of first 19 odd natural numbers is 361.
 - ÷. $1 + 3 + 5 + \dots 19$ times = $(19)^2 = 361$
 - 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 +*.*.. 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 + 37 = 361

18

9

3

- 6. A number ending with an odd number of zeros is <u>never</u> a perfect square.
- 7. <u>Negative</u> numbers have no square root in the system of rational numbers.
- 8. A number ending with <u>2</u>, <u>3</u>, <u>7</u> or **8** is never a perfect square.

Review Exercise

1. (<i>i</i>) $5184 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$	2 5184
$\sqrt{5184} = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3}$	2 2592
·	2 1296
$= 2 \times 2 \times 2 \times 3 \times 3$	2 648
= 72	2 324
$\therefore \sqrt{5184} = 72$	2 162
	3 81
	3 27
	3 9
	3 3
	1
(<i>ii</i>) 1521	3 1521
$1521 = 3 \times 3 \times 13 \times 13$	3 507
$\sqrt{1521} = \sqrt{3 \times 3 \times 13 \times 13}$	13 169
$= 3 \times 13 = 39$	13 13
	1
Hence, $\sqrt{1521} = 39$	
	2 3136
$(iii) 3136 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7$	2 1568
$\sqrt{3136} = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7}$	2 784
$= 2 \times 2 \times 2 \times 7$	2 392
= 56	2 196

- = 56 $\sqrt{3136} = 56$
- 2. $1 + 3 + 5 + 7 + \dots + 23$ We have $1 + 3 + 5 + \dots + (2n - 1) = n^2$ $\Rightarrow 2n - 1 = 23$ 2n = 24 n = 12and $n^2 = (12)^2 = 144$ Hence, $1 + 3 + 5 + 7 + \dots + 23 = 144$

- 3. (26)² = 26 × 26 = 676
 (10)² + (24)² = 100 + 576 = 676
 ∴ (26)² = (10)² + (24)²
 Hence, (10, 24, 26) is a Pythagorean triplet.
- **4.** We have between (n^2) and $(n + 1)^2$, there are 2n natural numbers.
 - (*i*) between 35 and 36, there are $35 \times 2 = 70$ natural numbers.
 - (*ii*) between 100 and 101, there are 100 × 2 = 200 natural numbers.
 - (*iii*) between 80 and 81, there are $80 \times 2 = 160$ natural numbers.
- **5.** (*i*)

	73
7	53 29 49
	49
143	4 29
	4 29
	0

$$\sqrt{5329} = 73$$
 (*ii*)

	241
2	$\overline{05}\overline{80}\overline{81}$
	4
44	1 80
	1 76
481	481
	481
	0

$$\sqrt{58081} = 241$$
 (*iii*)

98

49

7

2

7

7

	5.1961
5	$27.\overline{00}\overline{00}\overline{00}\overline{00}$
	25
101	2 00
	1 01
1029	9900
	9261
10386	63900
	62316
103921	158400
	103921
	54479
	I

 $\therefore \sqrt{27} = 5.1961$ Hence, $\sqrt{27} = 5.196$

 $\therefore (91)^2 = 8281 \& (92)^2 = 8464$ $(91)^2 < 8400 < (92)^2$ $\therefore (92)^2 - 8400 = 8464 - 8400 = 64$

Thus, the number 64 must be added to given number to make a perfect square. Now, 8400 + 64 = 8464

$$\begin{array}{r}
92\\
9\overline{84}\overline{64}\\
81\\
182\ 3\,64\\
\hline
0
\end{array}$$

$$\sqrt{8464} = 92$$

7. (i)
$$\frac{(105)^2 - (104)^2}{(6)^2 - (5)^2} = \frac{11025 - 10816}{36 - 25} = \frac{209}{9}$$

(ii)
$$(2881)^2 - (2880)^2 = 8300161 - 8294400$$
$$= 5761$$

8. Let the number of chairs in a row be x. Then

- $x \times x = 3025$ $\Rightarrow x^2 = 3025$ $\Rightarrow x = \sqrt{3025} = 55$ Hence, there are 55 chairs in a row. 525
- **9.** The least number which is exactly divisible by each of the numbers 8, 12, 15 and 20 is their L.C.M.

L.C.M. of 8, 12, 15 and 20 = $2 \times 2 \times 2 \times 3 \times 5 = 120$ To make it least square number be multiplied in number 120 by $2 \times 3 \times 5$ *i.e.* 30 So, the required least

number = $120 \times 30 = 3600$

10. Let the number be x. Then

$$\frac{x}{3} \times \frac{x}{9} = 108$$

Mathematics In Everyday Life-8

		io io unem
2	8	,12,15,20
2		4,6,15,10
3	2	2, 3, 15, 5
5	2	2, 1, 5, 5
	4	2, 1, 1, 1
		108
	1	$\overline{01}\overline{16}\overline{64}$
		1
20)8	16 64
		16 64
		0

0

 $\Rightarrow \qquad \frac{x^2}{27} = 108 \quad \Rightarrow \quad x^2 = 108 \times 27 = 2916$ $x = \sqrt{2916} = 54$

Hence, the required number is 54.

HOTS QUESTIONS

1. The largest 4 digit number is 9999.

The	square	root	of	9999.	
-----	--------	------	----	-------	--

		99
	9	<u>99</u> 99
_		81
-	189	18 99
		17 01
-		1 98

- $(99)^2 = 9801,$
- ∴ 99² < 9999 by 198, in order to 4 digit largest square number. Subtracting 198 from 9999.

Thus the required number is 9999 - 198 = 9801

2. Let the number be *x*, Then

	$\frac{x}{4} \times \frac{x}{6} = 486$	5	$\frac{54}{\overline{29}\overline{16}}$
	r^2		25
\Rightarrow	$\frac{x^2}{24} = 486$	104	4 16
⇒	$x^2 = 486 \times 24 = 11664$		4 16
,			0
	$x = \sqrt{11664} = 108$		•

Hence, the required number is 108.

3. Let
$$2m = 18$$

 $\Rightarrow m = 9$
 $\therefore m^2 - 1 = (9)^2 - 1 = 81 - 1 = 80$
and $m^2 + 1 = (9)^2 + 1 = 81 + 1 = 82$
Thus, the required Pythagorean triplet is
(18, 80, 82).

Illustration for first ten lockers and first ten students is given below : Students 7 1 2 3 4 5 6 8 9 10 0 1 2 С Ο С 3 Ο Locker Number 4 Ο С 0 5 Ο С С Ο С Ο 6 7 0 С 8 С Ο С Ο 9 Ο С Ο С 10 0 С Ο

 $O \rightarrow Opening the locker$

 $C \rightarrow Closing$ the locker

If a number is a perfect square, it will have an odd number of factors *e.g.*, 9 has three (odd) factors 1, 3 and 9.

So, locker number 9 will be visited by 3 students (1st, 3rd, 9th). First student will open the locker, third will close it and ninth will open it again. (*see* illustration)

Whereas if a number is a non-perfect square, it will have an even number of factors

e.g., 8 has four (even) factors 1, 2, 4 and 8.

So, locker number 8 will be visited by 4 students (1st, 2nd, 4th, 8th). First student will open the locker, second will close it, fourth student will open it and eighth will close it. (*see* illustration)

We see that, if a particular locker is visited an odd number of times (in case of perfect squares) it will be open at the end of the procedure, otherwise it will be closed (in case of non-perfect squares).

So, the open lockers are numbered 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, all of which are perfect squares.

Total number of lockers opened is 10.