MATHEMATICS IN EVERYDAY LIFE-7

Chapter 1 : Integers

CORDOVA

ANSWER KEYS

Exercise 1.1

1. (i) 256 and (-312)

$$
\begin{aligned}
256+(-312) & =-(312-256) \\
& =-56
\end{aligned}
$$

(ii) -319 and -136

$$
-319+(-163)=-(319+136)
$$

$$
=-455
$$

(iii) -127 and 300

$$
\begin{aligned}
-127+300 & =+(300-127) \\
& =173
\end{aligned}
$$

(iv)-197 and 214
$-197+214=+(214-197)$
$=17$
(v) -84 and -112

$$
\begin{aligned}
-84+(-112) & =-(84+112) \\
& =-196
\end{aligned}
$$

(vi) 215 and -42

$$
\begin{aligned}
215+(-42) & =+(215-42) \\
& =173
\end{aligned}
$$

2. (i) 32 from -56

$$
-56-32=-56+(-32)
$$

(Negative of 32 is -32)

$$
\begin{aligned}
& =-(56+32) \\
= & -88
\end{aligned}
$$

(ii) -73 from -80

$$
\begin{aligned}
-80-(-73) & =-80+73 \\
& =-(80-73) \\
& =-7
\end{aligned}
$$

(iii)-63 from 72

$$
\begin{aligned}
72-(-63) & =72+63 \\
& =135
\end{aligned}
$$

(iv) -32 from 0

$$
\begin{aligned}
0-(-32) & =0+32 \\
& =32
\end{aligned}
$$

(v) -92 from - 23

$$
\begin{aligned}
-23-(-92) & =-23+92 \\
& =+(92-23) \\
& =69
\end{aligned}
$$

(vi)-26 from 59

$$
\begin{aligned}
59-(-26) & =59+26 \\
& =85
\end{aligned}
$$

3. The sum of -524 and $678=-524+678$

$$
\begin{aligned}
& =+(678-524) \\
& =+154
\end{aligned}
$$

Now, subtract the sum from -92 , therefore

$$
\begin{aligned}
-92-(+154) & =-92-154 \\
& =-(154+92) \\
& =-246
\end{aligned}
$$

4. The sum of 83 and $-56=83+(-56)$

$$
\begin{aligned}
& =83-56 \\
& =27
\end{aligned}
$$

Now, subtract -341 from the sum, therefore

$$
\begin{aligned}
27-(-341) & =27+341 \\
& =368
\end{aligned}
$$

5. Ist integer + IInd integer $=-278$

$$
-156+\text { IInd integer }=-278
$$

$$
\text { IInd integer }=-278-(-156)
$$

$$
=-278+156
$$

$$
=-(278-156)
$$

$$
=-122
$$

Hence, the IInd integer is -122 .
6. The sum of -42 and $-147=-42+(-147)$

$$
\begin{aligned}
& =-42-147 \\
& =-(42+147) \\
& =-189
\end{aligned}
$$

The difference of -283 and $-415=-283-(-415)$

$$
\begin{aligned}
& =-283+415 \\
& =+(415-283) \\
& =132
\end{aligned}
$$

Now, subtract the sum from difference, we get, $132-(-189)=132+189=321$
7. $14-(-18)+[-32-(-15)]=14-(-18)+[-32+15]$

$$
\begin{aligned}
& =14-(-18)+(-17) \\
& =(14+18)-17 \\
& =32-17=15
\end{aligned}
$$

8. $a=-10, b=-4$ (given)

$$
\begin{aligned}
a-b & =-10-(-4) \\
& =-10+4 \\
& =-(10-4) \\
& =-6
\end{aligned}
$$

And, $\quad b-a=-4-(-10)$

$$
\begin{aligned}
& =-4+10 \\
& =+(10-4) \\
& =+6
\end{aligned}
$$

Hence, $a-b \neq b-a$
9. (i) $3+(-4)+(-5)-(-4)=3-4+(-5)-(-4)$

$$
\begin{aligned}
& =(-1)-5-(-4) \\
& =-(1+5)-(-4) \\
& =-6-(-4) \\
& =-6+4 \\
& =-(6-4) \\
& =-2
\end{aligned}
$$

(ii) $(-6)+(-9)+(-41)=-(6+9)+(-41)$

$$
\begin{aligned}
& =(-15)+(-41) \\
& =-(15+41) \\
& =-56
\end{aligned}
$$

10. (i) $[23-(-9)]+[12-(-6)]=(23+9)+[12-(-6)]$

$$
\begin{aligned}
& =32+(12+6) \\
& =32+18 \\
& =50
\end{aligned}
$$

(ii) $-15+(-63)-(-45)+(-16)=-15-63-(-45)+$ (-16)
(-16)

$$
=-(15+63)-(-45)+
$$

$$
=-78+45+(-16)
$$

$$
=-(78-45)+(-16)
$$

$$
=-33-16
$$

$$
=-(33+16)
$$

$$
=-49
$$

Exercise 1.2

1. (i) $6 \times(-12)=-(6 \times 12)$

$$
\begin{aligned}
& {[\because(+) \times(-)=(-)]} \\
& =-72
\end{aligned}
$$

(ii) $10 \times(-6) \times(-1)=-(10 \times 6) \times(-1)$

$$
[\because(+) \times(-)=(-)]
$$

$$
\begin{aligned}
& =-60 \times(-1) \\
& =+(60 \times 1)
\end{aligned}
$$

$[\because(-) \times(-)=+]$

$$
=60
$$

(iii) $(-17) \times(-5)=+(17 \times 5)$
$[\because(-) \times(-)=(+)]$

$$
=85
$$

(iv) $(-1) \times(-5) \times(-7) \times(-2)=+(1 \times 5) \times(-7) \times(-2)$ $[\because(-) \times(-)=(+)]$

$$
\begin{aligned}
& =5 \times(-7) \times(-2) \\
& =-(5 \times 7) \times(-2)
\end{aligned}
$$

$[\because(+) \times(-)=(-)]$

$$
\begin{aligned}
& =-35 \times(-2) \\
& =+(35 \times 2)
\end{aligned}
$$

$[\because(-) \times(-)=(+)]$

$$
=70
$$

(v) $6 \times(-5) \times(-5) \times(-2)=-(6 \times 5) \times(-5) \times(-2)$
$[\because(+) \times(-)=(-)]$

$$
\begin{aligned}
& =-30 \times(-5) \times(-2) \\
& =+(30 \times 5) \times(-2)
\end{aligned}
$$

$[\because(-) \times(-)=(+)]$

$$
=150 \times(-2)
$$

$$
=-(150 \times 2)
$$

$[\because(+) \times(-)=(-)]$

$$
=-300
$$

(vi) $0 \times 192 \times(-32)=0 \times(-32)$

$$
=0
$$

(vii) $20 \times(-123) \times(-5)=-(20 \times 123) \times(-5)$
$[\because(+) \times(-)=(-)]$

$$
\begin{aligned}
& =-2460 \times(-5) \\
& =+(2460 \times 5) \\
& =12300
\end{aligned}
$$

$[\because(-) \times(-)=(+)]$
(viii) $(-12) \times(-5) \times 12=+(12 \times 5) \times 12$
$[\because(-) \times(-)=(+)]$

$$
\begin{aligned}
& =60 \times 12 \\
& =720
\end{aligned}
$$

(ix) $3 \times(-8) \times 5=-(3 \times 8) \times 5$

$$
\begin{aligned}
{[\because(+) \times(-)} & =(-)] \\
& =-24 \times 5 \\
& =-(24 \times 5) \\
{[\because(-) \times(+)} & =(-)] \\
& =-120
\end{aligned}
$$

$(x)(-6) \times(-3) \times(-1) \times(-2)=+(6 \times 3) \times(-1) \times(-2)$ $[\because(-) \times(-)=(+)]$
$=18 \times(-1) \times(-2)$
$=-(18 \times 1) \times(-2)$
$[\because(+) \times(-)=(-)]$

$$
=-18 \times(-2)
$$

$$
=+(18 \times 2)
$$

$[\because(-) \times(-)=(+)]$

$$
=36
$$

2. (i) $3276 \times 3-3276 \times 2=3276 \times(3-2)$
(Distributive law)

$$
\begin{aligned}
& =3276 \times 1 \\
& =3276
\end{aligned}
$$

(ii) $8964 \times 1+99 \times 8964=8964 \times(1+99)$
(Distributive law)

$$
\begin{aligned}
& =8964 \times 100 \\
& =896400
\end{aligned}
$$

(iii) $1695 \times 678-695 \times 678=(1695-695) \times 678$
(Distributive law)

$$
\begin{aligned}
& =1000 \times 678 \\
& =678000
\end{aligned}
$$

(iv) $2314 \times 9+2314=2314 \times(9+1)$
(Distributive law)

$$
\begin{aligned}
& =2314 \times 10 \\
& =23140
\end{aligned}
$$

3. (i) $23 \times\{7+(-2)\}=23 \times 7+23 \times(-2)$

Taking L.H.S. $=23 \times\{7+(-2)\}$
$=23 \times\{+(7-2)\}$

$$
=23 \times 5
$$

$$
=115
$$

Now, taking R.H.S. $=23 \times 7+23 \times(-2)$

$$
\begin{aligned}
& =161+23 \times(-2) \\
& =161+\{-(23 \times 2)\}
\end{aligned}
$$

$$
[\because(+) \times(-)=(-)]
$$

$$
=161+(-46)
$$

$$
=+(161-46)
$$

$$
=115
$$

Hence, L.H.S. = R.H.S. (verified)
(ii) $(-18) \times[(-3)+(-5)]=[(-18) \times(-3)]+[(-18) \times(-5)]$

$$
\begin{aligned}
\text { L.H.S. } & =(-18) \times[(-3)+(-5)] \\
& =(-18) \times[-(3+5)] \\
& =-18 \times(-8) \\
& =+(18 \times 8)
\end{aligned}
$$

$[\because(-) \times(-)=(+)]$

$$
=144
$$

Now, R.H.S. $=[(-18) \times(-3)]+[(-18) \times(-5)]$

$$
=+(18 \times 3)+[(-18) \times(-5)]
$$

$[\because(-) \times(-)=(+)]$

$$
=54+[+(18 \times 5)]
$$

$[\because(-) \times(-)=(+)]$

$$
\begin{aligned}
& =54+90 \\
& =144
\end{aligned}
$$

Hence,
L.H.S. = R.H.S. (verified)
4. (i) The multiplicative inverse (reciprocal) of $6=\frac{1}{6}$
(ii) The multiplicative inverse of $\frac{-1}{3}=-3$
(iii) The multiplicative inverse of $-4=\frac{-1}{4}$
(iv) The multiplicative inverse of $\frac{-5}{2}=\frac{-2}{5}$
5. (i) $-23 \times(-1)=+(23 \times 1)$
$[\because(-) \times(-)=(+)]$

$$
=23
$$

Hence, the required integer is (-23).
(ii) $47 \times(-1)=-(47 \times 1)$
$[\because(+) \times(-)=(-)]$

$$
=-47
$$

Hence, the required integer is 47 .

$$
\begin{aligned}
(i i i) 0 \times(-1) & =-(0 \times 1) \\
& =0
\end{aligned}
$$

Hence, the required integer is 0 .
6. (i) $(-5) \times 19 \times(-60)=[(-5) \times(-60)] \times 19$

$$
=+(5 \times 60) \times 19
$$

$[\because(-) \times(-)=(+)]$

$$
\begin{aligned}
& =300 \times 19 \\
& =5700
\end{aligned}
$$

(ii) $25 \times 31 \times(-4)=[25 \times(-4)] \times 31$

$$
=-(25 \times 4) \times 31
$$

$[\because(+) \times(-)=(-)]$

$$
\begin{aligned}
& =-100 \times 31 \\
& =-3100
\end{aligned}
$$

(iii) $97 \times 25 \times(-2) \times(-4)=97 \times[25 \times(-2)] \times(-4)$ $=97 \times[-(25 \times 2)] \times(-4)$
$[\because(+) \times(-)=(-)]$

$$
\begin{aligned}
& =97 \times(-50) \times(-4) \\
& =97 \times[(-50) \times(-4)] \\
& =97 \times[+(50 \times 4)] \\
& =97 \times 200 \\
& =19400
\end{aligned}
$$

$[\because(-) \times(-)=(+)]$
$(i v)(-2) \times 4896 \times(-5)=[(-2) \times(-5)] \times 4896$ $=+(2 \times 5) \times 4896$
$[\because(-) \times(-)=(+)]$
$=10 \times 4896$
$=48960$
7. (i) $b \times(a+c)=b \times a+b \times c$

Given $a=3, b=-2, c=-1$

$$
\text { L.H.S. }=b \times(a+c)
$$

$$
=(-2) \times[3+(-1)]
$$

$$
=(-2) \times(3-1)
$$

$$
=(-2) \times 2
$$

$$
=-4
$$

R.H.S. $=b \times a+b \times c$
$=(-2) \times 3+(-2) \times(-1)$
$=-(2 \times 3)+(2 \times 1)$
$=(-6) \times 2$
$=-6+2$
$=-4$
Hence,L.H.S. = R.H.S.
(ii) $b \times c \times a=a \times b \times c=c \times a \times b$

Given that $a=3, b=-2, c=-1$

$$
\text { Taking, } b \times c \times a=(-2) \times(-1) \times 3
$$

$$
\begin{aligned}
{[\because(-) \times(-)=(+)] } & \\
& =2 \times 3 \\
& =6
\end{aligned}
$$

$$
=+(2 \times 1) \times 3
$$

Now, taking, $a \times b \times c=3 \times(-2) \times(-1)$

$$
\begin{aligned}
{[\because(+) \times(-)=(-)] } & =-(3 \times 2) \times(-1) \\
& =-6 \times(-1) \\
& =+(6 \times 1) \\
{[\because(-) \times(-)=(+)] } & =6
\end{aligned}
$$

Further we take, $c \times a \times b=(-1) \times 3 \times(-2)$

$$
=-(1 \times 3) \times(-2)
$$

$$
\begin{aligned}
{[\because(-) \times(+)=(-)] } & \\
& =(-3) \times(-2) \\
& =+(3 \times 2)
\end{aligned}
$$

$$
[\because(-) \times(-)=(+)]
$$

$$
=6
$$

Hence, $b \times c \times a=a \times b \times c=c \times a \times b$ (Verified)
(iii) $b \times c=c \times b$

Given that $b=-2, c=-1$
Taking L.H.S. $=b \times c$

$$
\begin{aligned}
& =(-2) \times(-1) \\
& =+(2 \times 1)
\end{aligned}
$$

$$
[\because(-) \times(-)=(+)]
$$

$$
=2
$$

Again, taking R.H.S. $=c \times b$

$$
=(-1) \times(-2)
$$

$=+(1 \times 2)$
$[\because(-) \times(-)=(+)]$

$$
=2
$$

Hence, L.H.S. $=$ R.H.S. (Verified)
8. (i) 2 * 5

We have, $a^{*} b=a \times b-(a+b)$
Therefore, $2 * 5=2 \times 5-(2+5)$

$$
\begin{aligned}
& =10-7 \\
& =3
\end{aligned}
$$

(ii) $(-4) *(-6)=(-4) \times(-6)-\{(-4)+(-6)\}$
$\left[\because a^{*} b=a \times b-(a+b)\right]$
$=+(4 \times 6)-\{-(4+6)\}$
$[\because(-) \times(-)=(+)]$

$$
\begin{aligned}
& =24-(-10) \\
& =24+10 \\
& =34
\end{aligned}
$$

(iii) $(-13) *(-6)=(-13) \times(-6)-\{(-13)+(-6)\}$ $\left[\because a^{*} b=a \times b-(a+b)\right]$

$$
=+(13 \times 6)-\{-(13+6)\}
$$

$$
[\because(-) \times(-)=(+)]
$$

$$
=78-(-19)
$$

$$
=78+19
$$

$$
=97
$$

Exercise 1.3

1. (i) $45 \div(-9)=\frac{45}{(-9)}=-\left(\frac{45}{9}\right)$

$$
=-5
$$

(ii) $(-243) \div 9=\frac{(-243)}{9}=-\left(\frac{243}{9}\right)$

$$
=-27
$$

(iii) $(-36) \div(-4)=\frac{(-36)}{(-4)}=\frac{36}{4}$

$$
=9
$$

(iv) $(-5525) \div(-221)=\frac{(-5525)}{(-221)}=\frac{5525}{221}$

$$
=25
$$

(v) $1728 \div(-12)=\frac{1728}{(-12)}=-\left(\frac{1728}{12}\right)$

$$
=-144
$$

(vi) $729 \div 9=\frac{729}{9}=81$
(vii) $(-133) \div(-19)=\frac{(-133)}{(-19)}=\frac{133}{19}=7$
(viii) $(-90) \div(-15)=\frac{(-90)}{(-15)}=\frac{90}{15}=6$
(ix) $105 \div(-21)=\frac{105}{(-21)}=-\left(\frac{105}{21}\right)=-5$
(x) $(-810) \div 27=\frac{(-810)}{27}=-\left(\frac{810}{27}\right)=-30$
2. (i) $\frac{-441}{21}=-\left(\frac{\left.\frac{447}{27}\right)^{21}}{7}=-21\right.$
(ii) $\frac{-195}{-13}=\frac{195}{13}_{1}^{15}=15$
(iii) $\frac{576}{-24}=-\left(\frac{\left.\frac{72}{\frac{576}{24}}\right)^{24}}{子_{1}}=-24\right.$
(iv) $\frac{-784}{-56}={\frac{784^{112}}{}{ }_{8}^{14}}_{8_{1}}=14$
3. (i) $[(-49) \div 7] \div(-7)=(-7) \div(-7)$

$$
\left[\because-\left(\frac{49}{7}\right)=-7\right]
$$

$$
=1
$$

(ii) $[(-11)+(-5)] \div[3+(-1)]=[(-11)-5] \div(3-1)$

$$
\begin{aligned}
& =-(11+5) \div 2 \\
& =(-16) \div 2=-8
\end{aligned}
$$

(iii) $(45 \div 9)-[(-36) \div 9]=5-[(-36) \div 9]$

$$
\begin{aligned}
& =5-(-4) \\
& =5+4=9
\end{aligned}
$$

(iv) $[(-56) \div(-8)]+[(-7) \div 7]=7+[(-7) \div 7]$ $[\because(-56) \div(-8)=7]$

$$
\begin{aligned}
& =7+(-1) \\
& =7-1 \\
& =6
\end{aligned}
$$

4. Given that $a=24, b=8, c=4$

Taking,

$$
\begin{aligned}
\text { L.H.S. } & =a \div(b+c) \\
& =24 \div(8+4) \\
& =24 \div 12 \\
& =2
\end{aligned}
$$

Now, taking R.H.S. $=(a \div b)+(a \div c)$

$$
\begin{aligned}
& =(24 \div 8)+(24 \div 4) \\
& =3+6=9
\end{aligned}
$$

Hence, L.H.S. \neq R.H.S.
5. Many Cases is possible for $a \div b=-4$

Therefore,

| if, | $8 \div(-2)=-4$ |
| :--- | ---: | :--- |
| \Rightarrow | $(8,-2)$ |
| if, | $(-8) \div 2=(-4)$ |
| \Rightarrow | $(-8,2)$ |
| if, | $12 \div(-3)=-4$, |
| \Rightarrow | $(12,-3)$ |
| if, | $-12 \div 3=-4$ |
| \Rightarrow | $(-12,3)$ |

Hence, four pairs are $(8,-2),(-8,2),(12,-3)$ and $(-$ 12, 3).
6. If p and q are two integers such that $p<q$, then $p \div$ q is not necessarily an integer.
Therefore, if $p=3$, and $q=5$
$\Rightarrow p \div q=3 \div 5=\frac{3}{5}$
Similarly, such more case arise.
Such as $1 \div 3=\frac{1}{3}, 2 \div(-5)=-\frac{2}{5},(-4) \div 7=\frac{-4}{7}$ and so on.

Exercise 1.4

1. The product of two integers $=270$

One integer $=-18$
Then,

$$
\text { Other integer }=270 \div(-18)
$$

$$
\begin{aligned}
& =\frac{270}{(-18)}=-\left(\frac{270}{18}\right) \\
& =-15
\end{aligned}
$$

Hence, the other integer is (-15).
2. Integer multiplied by $\frac{4}{9}=-28$

$$
\text { Integer } \times \frac{4}{9}=-28
$$

$$
\begin{aligned}
\text { Integer } & =\frac{(-28) \times 9}{4} \\
& =\frac{-(28 \times 9)}{4} \\
& =\frac{-252}{4} \\
& =-\left(\frac{252}{4}\right) \\
& =-63
\end{aligned}
$$

Hence, the required integer is (-63).
3. Integer divided by $(-9)=-8$

$$
\begin{aligned}
\text { Integer } \div(-9) & =-8 \\
\text { Integer } & =(-8) \times(-9) \\
& =+(8 \times 9) \\
& =72
\end{aligned}
$$

Hence, the required integer is 72 .
4. Profit on selling one pen $=₹ 1=100$ paise

$$
\text { (₹ } 1 \text { = } 100 \text { paise) }
$$

Profit on selling 40 pens $=100 \times 40=4000$ paise $=+4000$
(Profit)
Loss on selling one pencil $=30$ paise $=-30$
(loss)
Total loss in particular month
$=₹ 5=500$ paise $=-500$
(loss)
Therefore, $4000+$ Number of pencils $\times(-30)=-500$

$$
\begin{aligned}
& \text { Number of pencils }=\frac{4000+500}{30} \\
& \begin{aligned}
\text { Number of pencils } & =\frac{4500}{30} \\
& =150
\end{aligned}
\end{aligned}
$$

Hence, shopkeeper sold 150 pencils.
5. The time taken by the elevator to reach -340 m (340 m below) from 20 m above the ground level

$$
\begin{aligned}
& =(20+340) \div 6 \\
& =360 \div 6 \\
& =60 \mathrm{~min} \\
& =1 \text { hour }
\end{aligned}
$$

$$
(\because 1 \text { hour }=60 \text { minutes })
$$

6. Amount in Rajan's bank account $=₹ 6000$

One week later, Rajan deposited $=₹ 1500$

$$
\text { Total amount }=6000+1500=
$$

₹ 7500

$$
\begin{aligned}
\text { and, withdrawal } & =₹\left(\frac{1}{3} \times 7500\right) \\
& =₹ 2500
\end{aligned}
$$

Balance amount after withdraw $=₹(7500-2500)$

$$
\text { = ₹ } 5000
$$

7. Quotient $=-18$, divisor $=$?

$$
\begin{aligned}
\text { Dividend } & =-324 \\
\Rightarrow \quad-324 \div \text { Integer } & =-18 \\
\text { Integer } & =-324 \div(-18) \\
& =\frac{(-324)}{(-18)}=\frac{324}{18}=18
\end{aligned}
$$

8. (i) sum is -9

$$
\begin{aligned}
-6+(-3) & =-6-3 \\
& =-(6+3) \\
& =-9
\end{aligned}
$$

Hence, required pair is $(-6,-3)$.
(ii) difference is -7

$$
\begin{aligned}
3-10 & =3-10 \\
& =-(10-3) \\
& =-7
\end{aligned}
$$

Hence, required pair is $(3,7)$.
(iii) sum is 0 .

$$
5+(-5)=5-5=0
$$

Hence, required pair is $(5,-5)$.

MCQs

1. $(-9)-(-15)=-9+15$

$$
\begin{aligned}
& =+(15-9) \\
& =+6
\end{aligned}
$$

Hence, Option (c) is correct.
2. $3495+3495 \times 9=3495 \times(1+9)$ (Distributive law $)$

$$
=3495 \times 10
$$

$$
=34950
$$

Hence, Option (b) is correct.
3. $(-12) \times 6-(-12) \times 4$

$$
\begin{aligned}
& =(-12) \times(6-4) \text { (Distributive law) } \\
& =(-12) \times 2 \\
& =-(12 \times 2)=-24
\end{aligned}
$$

$[\because(-) \times(+)=(-)]$
Hence, Option (d) is correct.
4. $6-(-8)=6+8$

$$
=14
$$

Hence, Option (b) is correct.
5. Other Integer $=(-14)-20$

$$
\begin{aligned}
& =-14-20 \\
& =-(14+20) \\
& =-34
\end{aligned}
$$

Hence, Option (a) is correct.
6. $(-6)-7=-6-7$

$$
\begin{aligned}
& =-(6+7) \\
& =-13
\end{aligned}
$$

Hence, Option (b) is correct.
7. For $c=-1,0$ and a is setisfied the given condition. So, Option (a) is correct.
8. $2-(-3)=2+3$

$$
=5
$$

Hence, Option (c) is correct.
9. $-6-6=-(6+6)$

$$
=-12
$$

Hence, Option (a) is correct.
10. The smallest integer is not defined.

So, Option (d) is correct.
11. $0 \div(-3)=0$

Hence, Option (b) is correct.
12. $(-7) \div 0$
it is not defined.
Hence, Option (d) is correct.
13. On subtracting -5 from -7 .

$$
\begin{aligned}
-7-(-5) & =-7+5 \\
& =-(7-5)=-2
\end{aligned}
$$

Hence, Option (b) is correct.
14. Largest three digit integer $=999$

Smallest two digit positive integer $=10$
Then, The product $=999 \times 10$

$$
=9990
$$

Hence, Option (b) is correct.
15. Integer $=575 \div(-23)$

$$
\begin{aligned}
& =\frac{575}{(-23)} \\
& =-\left(\frac{575}{23}\right)=-25
\end{aligned}
$$

Hence, Option (c) is correct.

Mental Maths Cornar

1. Positive integer.
2. negative
3. positive
4. The Successor of $-175=-175+1$

$$
=-174
$$

5. The additive inverse of $7=-(+7)$

$$
=-7
$$

6. $a-1$
7. Other integer $=47-(-13)$

$$
\begin{aligned}
& =47+13 \\
& =60
\end{aligned}
$$

8. positive
9. Integer $\div(-6)=25$

$$
\begin{aligned}
\text { Integer } & =25 \times(-6) \\
& =-(25 \times 6) \\
& =-150
\end{aligned}
$$

10. 0,1
11. a, not defined.
12. smaller than

REVIEW EXERCISE

1. $\{40 \div(-7)\} \div\{(-48) \div 16\}=(-6) \div\{(-48) \div 16\}$
$=(-6) \div(-3)$
$=2$
2. (i) $(6-8) \times 10$ and $6-(8 \times 10)$

$$
\begin{aligned}
(6-8) \times 10 & =(-2) \times 10 \\
& =-20 \\
6-(8 \times 10) & =6-80 \\
& =-(80-6) \\
& =-74
\end{aligned}
$$

Thus, $(6-8) \times 10>6-(8 \times 10)$
$(\because-20>-74)$
(ii) $(12+6) \times 10$ and $12+(6 \times 10)$

$$
\begin{aligned}
& (12+6) \times 10=18 \times 10=180 \\
& 12+(6 \times 10)=12+60=72
\end{aligned}
$$

and
Thus, $(12+6) \times 10>12+(6 \times 10)$ $(\because 180>72)$
(iii) $\{(-3)-7\} \times(-2)$ and $(-3)-\{7 \times(-2)\}$

$$
\{(-3)-7\} \times(-2)=\{-(3+7)\} \times(-2)
$$

$$
=(-10) \times(-2)
$$

$$
=+(10 \times 2)=20
$$

$(-3)-\{7 \times(-2)\}=(-3)-\{-(7 \times 2)\}$
$=(-3)-(-14)$
$=(-3)-(-14)$
$[(-) \times(-)=(+)]$

$$
=(-3)+14
$$

$$
=11
$$

Thus, $(-3)-\{7 \times(-7)\}>\{(-3)-2\} \times(-2)$

$$
[\because 20>11]
$$

3. (i) $23967 \times 99+23967$
$=23967 \times(99+1)$
(Distributive law)
$=23967 \times 100$
$=2396700$
(ii) $1982 \times 776-982 \times 776$
$=776 \times(1982-982) \quad$ (Distributive law)
$=776 \times 1000=776000$
(iiii) $3764 \times 99-(-3764)$
$=3764 \times\{99-(-1)\} \quad$ (Distributive law)
$=3764 \times(99+1)$
$=3764 \times 100=376400$
4. (i) sum is -5 .

There are many pairs whose sum is -5 .
like, $(-8,3)$, \qquad etc.
(ii) difference is -9 .

There are many pairs whose difference is -9 .
like, $(2,11)$....... etc.
(iii) sum is 0

There are many pairs whose sum is zero.
like as $(6,-6)$ etc.
(iv) Product is -15 .

There are many pairs whose product is -15 .
like as $(3,-5)$, $(5,-3)$ etc.
(v) Product is 24.

There are many pairs whose product is 24 .
like as $(3,8),(2,12),(6,4)$ etc.
(vi) Quotient is 6.

There are many pairs whose quotient is 6 .
like as $(12,2),(18,3)$ etc.
(vii) Quotient is -7 .

There are many pairs whose quotient is -7 .
like as $(-14,2),(-21,3)$ etc.
5. Height of the plane from the sea level $=4500 \mathrm{~m}$

Depth of the submarine below the sea level $=1100$
m
Total vertical distance $=(+4500)+(+1100)$

$$
=4500+1100
$$

$$
=5600 \mathrm{~m}
$$

6. Subtract -8 from $15=15-(-8)$

$$
=15+8
$$

$$
=23
$$

Now, subtract 15 from $-8=-8-(15)$

$$
=-8-15
$$

$$
=-(8+15)
$$

$$
=-23
$$

No, both the results are not same.
7. (i) $-15+(-23)-(-24)+(-17)=-15-23-(-24)+(-$ 17)
(-17)

$$
=-(15+23)-(-24)+
$$

$$
=-38+24+(-17)
$$

$$
=-(38-24)+(-17)
$$

$$
=-14-17
$$

$$
=-(14+17)
$$

$$
=-31
$$

(ii) $(-5) \times(-13) \times(-1) \times 0 \times(-6)$
$=+(5 \times 13) \times(-1) \times 0 \times(-6)$
$[(-) \times(-)=(+)]$
$=+65 \times(-1) \times 0 \times(-6)$
$=-(65 \times 1) \times 0 \times(-6)$
$[(+) \times(-)=(-)]$
$=-65 \times 0 \times(-6)$
$=-(65 \times 0) \times(-6)$
$=0 \times(-6)$
$=0$
8. (i) 5 negative integers and 3 positive integers.

Whatever may be the number of positive integers. It will not affect the sign of product.

Since, The product of odd number of negative integers is negative. So, 5 is odd.

Hence, the given product is negative.
(ii) Since, 19 is odd. So the product of 19 negative integers is negative, and any number of positive integer will not affect the sign of product. So, the given product is negative.
(iii) 12 negative integers and 9 negative integers. $21(12+9)$ is odd. Hence the product of 12 and 9 negative integers together is negative.
(iv) 17 positive integers and 6 negative integers.

Since, 6 is even, so, the product of 6 negative integers is positive.

Hence, the product of 17 positive and 6 negative integers together is positive.

HOTS

1. $\frac{\text { Integer } \times(-1)}{(-9)}=\frac{1}{\text { Integer }}$
$\Rightarrow \frac{-(\text { Integer } \times 1)}{(-9)}=\frac{1}{\text { Integer }}$
$\Rightarrow(\text { Integer })^{2}=9=3^{2}$
\Rightarrow Integer $=3$
2. $(+1000)+(-1250)+600+(-800)$
$(\because(+)$ ve sign $=$ North direction, $(-$
)ve sign = South direction)
$=-(1250-1000)+600+(-800)$
$=-250+600+(-800)$
$=+(600-250)+(-800)$
$=350+(-800)$
$=-(800-350)$
$=-450 \mathrm{~m}$
Hence, 450 m south.

Puzzle

VALUE BASED QUESTION SUMMATIVE ASSESSMENT

Let the five digit be in order a, b, c, d, e.
Now from 1st clue : $e+c=14$
2nd clue : $1+b=d$
3rd clue : $a+1=2 b$
4th clue : $b+c=10$
5th clue : $a+b+c+d+e=30$
Now, from 5th clue,

$$
\begin{array}{r}
a+(b+c)+d+e=30 \\
a+10+d+e=30
\end{array}
$$

(4 th clue $\mathrm{b}+\mathrm{c}=10$)

$$
(2 b-1)+10+1+b+e=30
$$

$[\because a=2 b-1$ from 3rd clue and $d=1+b$ from 2nd clue]

$$
(2 b-1)+10+1+b+(14-c)=30
$$

[$e=14-c$ from 1st clue]
$2 b-1+10+1+b+14-10+b=30$
$(2 b+b+b)+(14-10+10-1+1)=30$ $4 b+14=30$
$4 b=30-14$
$4 b=16$
$b=4$
Substituting the value of b in all the clues, we get the code 74658.

Nikita had balloons $=60$
Number of balloons distributed to her friends
$=60-12=48$
(a) Number of balloons each of her friend gets $=48 \div 8=6$
(b) Sharing the things to the friends is a good habit. Nikita shows sharing by this gesture.

